Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Water monitoring at four locations on the Choptank River and four locations on the Pocomoke River in Maryland, U.S.A., was conducted from 2021 through 2023. Funding and scientific rationale were provided by the National Science Foundation grant 2049073 (“Resolving Sediment Connectivity between Rivers and Estuaries by Tracking Particles with their Microbial Genetic Signature”). The monitoring locations were chosen to measure estuary dynamics from the tidal freshwater zone through the mesohaline estuary. Parameters measured included water temperature, water level, water conductivity (reported as specific conductivity), water turbidity, and water velocity.more » « less
- 
            Introduction Damming has substantially fragmented and altered riverine ecosystems worldwide. Dams slow down streamflows, raise stream and groundwater levels, create anoxic or hypoxic hyporheic and riparian environments and result in deposition of fine sediments above dams. These sediments represent a good opportunity to study human legacies altering soil environments, for which we lack knowledge on microbial structure, depth distribution, and ecological function. Methods Here, we compared high throughput sequencing of bacterial/ archaeal and fungal community structure (diversity and composition) and functional genes (i.e., nitrification and denitrification) at different depths (ranging from 0 to 4 m) in riparian sediments above breached and existing milldams in the Mid-Atlantic United States. Results We found significant location- and depth-dependent changes in microbial community structure. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi, Acidobacteria, Planctomycetes, Thaumarchaeota, and Verrucomicrobia were the major prokaryotic components while Ascomycota, Basidiomycota, Chytridiomycota, Mortierellomycota, Mucoromycota, and Rozellomycota dominated fungal sequences retrieved from sediment samples. Ammonia oxidizing genes ( amo A for AOA) were higher at the sediment surface but decreased sharply with depth. Besides top layers, denitrifying genes ( nos Z) were also present at depth, indicating a higher denitrification potential in the deeper layers. However, these results contrasted with in situ denitrification enzyme assay (DEA) measurements, suggesting the presence of dormant microbes and/or other nitrogen processes in deep sediments that compete with denitrification. In addition to enhanced depth stratification, our results also highlighted that dam removal increased species richness, microbial diversity, and nitrification. Discussion Lateral and vertical spatial distributions of soil microbiomes (both prokaryotes and fungi) suggest that not only sediment stratification but also concurrent watershed conditions are important in explaining the depth profiles of microbial communities and functional genes in dammed rivers. The results also provide valuable information and guidance to stakeholders and restoration projects.more » « less
- 
            Abstract The seasonal controls of hydrology, temperature, hypoxia, and biogeochemical conditions for groundwater ammonium–N (NH4+) concentrations are not well understood. Here we investigated these controls for riparian groundwaters located upstream of two milldams over a period of 4 years. Groundwater chemistry was sampled monthly while groundwater elevations, hydraulic gradients, and temperatures were recorded sub‐hourly. Distinct seasonal patterns for NH4+were observed which differed among the wells. For wells that displayed a strong seasonal pattern, NH4+concentrations increased through the summer and peaked in October–November. These elevated concentrations were attributed to ammonification, suppression of nitrification, and/or dissimilatory nitrate reduction to ammonium (DNRA). These processes were driven by high groundwater temperatures, low hydraulic gradients (or long residence times), hypoxic/anoxic groundwater conditions, and increased availability of dissolved organic carbon as an electron donor. In contrast, NH4+concentrations decreased in the riparian groundwater from January to April during cool and wet conditions. A groundwater well with elevated total dissolved iron (TdFe) concentrations had elevated NH4+concentrations but displayed a muted seasonal response. In addition to hydrologic controls, we attributed this response to additional NH4+contribution from Fe‐driven autotrophic DNRA and/or ammonification linked to dissimilatory Fe reduction. Understanding the temporal patterns and factors controlling NH4+in riparian groundwaters is important for making appropriate watershed management decisions and implementing appropriate best management practices.more » « less
- 
            Abstract Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%–70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225–241. © 2022 SETACmore » « less
- 
            Abstract Groundwater nitrate‐N isotopes (δ15N‐) have been used to infer the effects of natural and anthropogenic change on N cycle processes in the environment. Here we report unexpected changes in groundwater δ15N‐ for riparian zones affected by relict milldams and road salt salinization. Contrary to natural, undammed conditions, groundwater δ15N‐ values declined from the upland edge through the riparian zone and were lowest near the stream. Groundwater δ15N‐ values increased for low electron donor (dissolved organic carbon) to acceptor ratios but decreased beyond a change point in ratios. Groundwater δ15N‐ values were particularly low for the riparian milldam site subjected to road‐salt salinization. We attributed these N isotopic trends to suppression of denitrification, occurrence of dissimilatory nitrate reduction to ammonium (DNRA), and/or effects of road salt salinization. Groundwater δ15N‐ can provide valuable insights into process mechanisms and can serve as “imprints” of anthropogenic activities and legacies.more » « less
- 
            Abstract Milldams and their legacies have significantly influenced fluvial processes and geomorphology. However, less is known about their effects on riparian zone hydrology, biogeochemistry, and water quality. Here, we discuss the potential effects of existing and breached milldams on riparian nitrogen (N) processing through multiple competing hypotheses and observations from complementary studies. Competing hypotheses characterize riparian zone processes that remove (sink) or release (source) N. Elevated groundwater levels and reducing soil conditions upstream of milldams suggest that riparian zones above dams could be hotspots for N removal via denitrification and plant N uptake. On the other hand, dam removals and subsequent drops in stream and riparian groundwater levels result in drained, oxic soils which could increase soil nitrification and decrease riparian plant uptake due to groundwater bypassing the root zone. Whether dam removals would result in a net increase or decrease of N in riparian groundwaters is unknown and needs to be investigated. While nitrification, denitrification, and plant N uptake have typically received the most attention in riparian studies, other N cycle processes such as dissimilatory nitrate reduction to ammonium (DNRA) need to be considered. We also propose a novel concept of riparian discontinuum, which highlights the hydrologic and biogeochemical discontinuities introduced in riparian zones by anthropogenic structures such as milldams. Understanding and quantifying how milldams and similar structures influence the net source or sink behavior of riparian zones is urgently needed for guiding watershed management practices and for informed decision making with regard to dam removals.more » « less
- 
            Abstract The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant.more » « less
- 
            Abstract Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates andδ15N values were also determined. Denitrification rates and soilδ15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
